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The weak-field magnetic susceptibility of a thin superconducting film is calculated with a microscopic 
theory based on the work of Bardeen, Cooper, and Schrieffer. The finite sample size is taken into account by 
forming "Cooper pairs" from one-electron states whose wave functions vanish at the film boundary. Al­
though the excitation spectrum of the superconductor remains essentially unchanged by this discrete quanti­
zation, the weak-field magnetic susceptibility is found to have a considerably lower value than previous 
theoretical estimates. 

1. INTRODUCTION 

IN this work the theory of Bardeen, Cooper, and 
Schrieffer1 is applied to thin superconducting films. 

In particular the " Cooper pairs"2 are formed from 
electronic wave functions which vanish at the surface 
of the film, and thus finite size effects are incorporated 
from the start. The main application considered here is 
the magnetic susceptibility in weak fields.3 Previous 
calculations of this quantity, such as Schrieffer's,4 

made use of the nonlocal relation between current and 
vector potential appropriate to bulk superconductors. 
The present boundary conditions are, of course, rather 
unrealistic, as is the neglect of impurities distributed 
throughout the interior of the sample. On the other 
hand, the model chosen does permit a relatively com­
plete study of the size effect by itself on the basis of a 
completely microscopic theory. 

2. METHOD 

The magnetic properties of the system will be derived 
using the standard perturbation treatment in which 
first-order changes in the wave function are used to 
calculate the current as a function of the applied field. 
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by the U. S. Army Research Office-Durham. It also constitutes 
partial fulfillment by S. J. Krieger of the requirements of the 
Graduate School of the University of California at Berkeley for the 
Ph.D. degree. 
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3 A discussion of the effects of finite size on the excitation spec­

trum and on the pair-correlation function is given in the Ph.D. 
thesis of S. J. Krieger, University of California, Berkeley, Cali­
fornia, 1963 (unpublished). For films of practical interest the ex­
citation spectrum is essentially the same as for a bulk medium. 
[For a discussion of the possibility of resonances in the super­
conducting energy gap, see J. M. Blatt and C. J. Thompson, 
Phys. Rev. Letters 10, 332 (1963); C. J. Thompson and J. M. 
Blatt, Phys. Letters 5, 6 (1963); or David S. Falk, Phys. Rev. 
129, 2340 (1963). These resonances occur about the bulk energy 
gap and are almost certainly unobservable in any real 
superconductor.] 

4 J. R. Schrieffer, Phys. Rev. 106, 47 (1957). 

The first step will be to derive an expression relating 
the current density to the total field. The expression for 
the current density may then be substituted into the 
appropriate Maxwell equation in order to derive, in a 
self-consistent manner, the magnetic vector potential. 
The calculation will be carried out in the London gauge: 
divergence of A, Ai equal to zero. When one neglects 
the term of second order in the magnetic potential, the 
interaction Hamiltonian may be written 

mcj 
(i) 

The electron fields are expanded in creation and anni­
hilation operators appropriate to a film of thickness a 

1 /2\^ 1 / 2 \ ^ 
0 T ( r ) = — ( - ) £ Cn,t(K)«, 

Xexp(—iK*Q) sinmr-. (2) 
a 

In this equation the position of an electron is specified 
by the polar vector 9 in a plane containing one face of 
the film, and the distance z from that plane. The one-
electron states are labeled by the spin-projection 0-
along some axis, the polar momentum fit:, and the 
quantum number n characterizing the standing waves 
in the z direction; the Cn^{^) are the corresponding 
fermion creation operators. Perturbation theory, applied 
in the manner of BCS, then gives to lowest nonvanish-
ing order, the following expression for the current 
density1 

j(r) = <*a)jJp(r) |*o>+<^o|Jp(j) |* c l )> 
+ <$o|Jz>(r)|$o>, (3) 

where the paramagnetic and diamagnetic portions of 
the current operator are denned by 

J p ( r ) = - ( e / 2 m ) ( ^ t ( r ) v ^ ( r ) - ( v ^ t ( r ) ) v t ( r ) ) , (4) 

J D « = - ( e 2 / W t y t ( r ) A ( r t y ( r ) , (5) 
A564 



M A G N E T I C S U S C E P T I B I L I T Y O F T H I N S U P E R C O N D U C T I N G F I L M A565 

and |$ ( 1 )) is given, as usual, by 

<$<|ffi|*o> 
13>(1)H£ 1*«). (6) 

i*o Eo—Ei 

Carrying out the calculation of the matrix elements in Eq. (3) we obtain for j(r) the two terms 

e2 1 

Sm2c ( 2 T T ) 2 
^ W ^ T T " ( ~ ) ^ ^ Z(e r l(K),€^(KO)(K^-K /)K /•[a^_n(K-K /)-a^+ M(K-K ,)] 

Xexp[— i (W—K)«P] cos(w—W')^—cos(VfVK~ |+c . c . , (7) 
z z~) 

aJ 

Ne2 r AT«„(K) s i 
Jd(r) = A(r) 1 - E — — c o s ^ x - . (8) 

mc L una N aA 

The number of particles in the quantum state (K,W,C) is E~ (e2+A2)1/2 in the above; A represents the energy 
specified by Nnafa)', N represents the total number of gap at zero temperature. Finally the function an(i<) is 
particles. The temperature dependence is contained in the Fourier transform of the vector potential over the 
the function L ( € „ ( K ) , € W ' ( K / ) ) which is, in fact, just the volume of the sample 
function derived by Bardeen, Cooper, and Schrieffer 
[Eq. (4.22), Ref. 1] . In the zero-temperature limit to \ n\ r % 
which we shall soon confine our attention it takes the a»(ic) = ( - 1 / dxe~iK'p cosnx-A(r). (10) 
form ( 2 T T ) 2 W . / a 

1 £ - £ ' / ee'+A2\ 

2 e2— e'2\ EEr ) ^ e t w o a n g u ^ a r integrations in momentum space 
along with one integration over magnitude K may be 

We have adopted the short-hand notation €=en(ic), carried out in Eq. (7) so that we obtain 

3 1 TTA(O) r J(9-9';z,z';T)TW-AW 
3 (r) = — — — — / dt' — zr— — , (11) 

/ ( p - e ' ; s , z ' ; r ) = -

4:wATc VO J R* 

2ArA
2(T) r»detl-2/(A) 1 -2f (E)} 

TTA(0)A JO ni -

# 2Re t r 2 [ P 2 + ( 2 + ^ 0 2 ] 1 / 2 1 
sin [-sin ——— e 

Vo L vo 

-P2+0H~O2-|2 

R 2 

rtiv+iz+z'yji2 

-2 coslkF(lP2+(z+zf)23^-lP2+(z-z,)2Jl2)'2 sin -
L vo 

[_P2+(z+zfy-]tP2+(z-z')2-] 
R* 

l 
i-(z-z')2-]} 

. (12) 

The notation is the same as that of BCS1 except for 3. THIN FILM LIMIT AT ZERO TEMPERATURE 

the obvious changes to polar coordinates. Thus A t z e r o temperature the expression (12) simplifies 

A 2 r00 somewhat. In addition to the elimination of the Fermi 
A = 1 = / dKKAL(e e ) , functions the final integration over energy may be 

N e 2 AT KFBJ O performed. The details of the calculation are given in 
Ref. 3, and involve the introduction of the Fourier 

and / represents the Fermi function. Finally z;0 is the transform of the current, 
velocity at the Fermi surface and the quantity P is 
defined as P = p — g'. In deriving Eq. (12) it has been i n \ r z 
assumed that in the limit A —» 0 the contribution of the jm(q) = f - j / dt exp(—iq* p) cosw7r-j ( r ) . (13) 
paramagnetic current cancels the diamagnetic current. (2ir)2\a/ J a 
In effect this amounts to the neglect of the small 
Landau diamagnetism. The results of a somewhat tedious calculation, valid for 
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#£o, a / £o« l are 

jm(q) = E Kmn(q)an(q), 
47T » 

(14) 

^ W 7 i ( q ) : 

4TT 3 a r1 

Ac2 

3 a r1 r1 

/ dx dxf 

2 £o./o Jo 
cosmwx cosmrx 

X{ln(Zo/ay-(2C+l)-ln\x-x'\2 

-2lKo(veiTlA(xxyf2)+Ko(ve~iT!A(xxf)1f2)'] 

+2(a/Q(x+x'+\x-x'\)}. (15) 

Here C is Euler's constant and rj is defined as TJ 
= 2(2kFaa/^o)1/2. By substituting Eq. (14) into the 
Maxwell equation 

/mw\2" 
a«(q) 

4x 
= —jm(q) + 

/W7T\ 2 

' !+(T) aOT«»(q), (16) 

a set of linear equations for the functions aw(q) is 
obtained: 

/miry 

/ + ( T ) »m(q)+E ^mn(q)a„(q) 

[ /nnr\2~i 

a»o»(q). (17) 

This set of equations takes the simplest form when 
am

(0)(q), the externally applied potential, represents a 
constant field B0 parallel to the film. We then have 

am
(0)(q) = aBoxd(q), m = 0 , 

= 0, m = even integer, 

= — [4:aBo/ (?mr)2~]xb (q), w = odd integer. 

(18) 

Substituting Eq. (20) for #0 into Eq. (21), we obtain a 
set of equations for the coefficients #2m+i. Introducing 
the notation 

'01 -

0 2 

#2m+l-

, ko)= 
4£ O 0 

7T2 

' 1 - 2 

3-2 

.(2w+l)~2-

^ m n = ( - ) ( 2 w + l ) - 2 

XC^2m+l,2n+l~^00~1(^2w+l,0^0,2n+l) J , 

the solution to this set of equations may be written 

\a)=(l+K)-i\a0). (22) 
Now 

a /a\2 
4TT a / a \ 2 

| £ | « [ - ) « 1 0 - V 
Ac2 

with a expressed in angstroms, so that for a < 500 A we 
may approximate the solution to Eq. (22) by 

| a > = ( l - X ) | a o > 

in which case the coefficients #2m+i are given by 

W0a 

(23) 

#2m+l = • Z ( l - ^ W l , 2 n + l ( 2 ? H - I)"2 

= -%B0a-
4BQa 

' Z> -^2m+l,2n+l (2n+l)-2. (24) 

The magnetic susceptibility K is defined by 

K 1 r« Bo~B(z) 
— = - / efe — 
ACQ 0 ^ 0 $ 0 

(25) 

I t follows that am(q) oc s(q) so that by defining 8(q)am w i t h K Q = _ 1 / 4 T > W e o b t a i n f o r t h e susceptibility the 
= x- am(q) we have only to solve the reduced equations r esult 

/mir\2 /mr\2
 K g 

[—) am+Z Kmnan= {— J fc»). (19) - = - £ K2m+1,^L(2n+1)~2 

These equations split naturally into the equation for a0 

n 

and the equation for the odd am 

(2W+I ) 2 f - J 02m+l+-̂ 2m+l,O0O 

(20) 

KQ 7T n,m 

— 2-, L ^ 2 m + 1 , 2 n + l ~ ^ 0 0 1 ( ^ 2 w + l , 0 ^ 0 , 2 w + l ) j 

X(2n+l)-2(2m+l)-2. (26) 

The summations over m and n may be carried out, thus 
reducing the calculation of the susceptibility to the 
evaluation of several double integrals: 

4£o 
~f~Z^ AT2m_|_l,2w-fl#2tt+l— . (21) 

» a 

K 3 /a\2/a\r KMoKm 

KQ 1 6 \ X / \ ? o / L KQQ ]• (27) 
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where 

KMN= J dx(l-2x) f dx'(l-2x')K(x,x'), (28) 
Jo Jo 

KMO=KON= J dx I dx'(l-2x')K(x,x'), (29) 
Jo Jo 

Koo= J dxj dxf\\n(~J -(2C+1)+K(x,xf) 1 , (30) 

and 

K (x,x') = — In | x—xr |2 

- 2 [ i r o ( 7 7 ^ ^ A ( ^ , ) 1 / 2 ) + ^ o ( ^ - i 7 r / A ( ^ 0 1 / 2 ) ] 

For 77 < 2 which corresponds to a < 100 A we may ex­
pand the Bessel functions which occur in Eq. (31). 
The integrations Eq. (28) through Eq. (30) may then 
be carried out analytically. The resultant expression for 
the magnetic susceptibility is plotted on Fig. 1. The 
result is considerably lower than that predicted by the 
nonlocal Pippard theory5 as calculated by Schrieffer.4 

On the other hand, in common with Pippard we find 
that K oc a3/%Q\2 for very thin films. Results for thicker 
films, say in the range 100 to 500 A will probably re­
quire numerical solution with computers. 

4. DISCSUSION 

This theory of the weak-field magnetic susceptibility 
of thin superconducting films has only been evaluated 
for rather thin films (less than 100 A). Effects of im­
purities have been completely ignored and the elec­
tronic wave function made to vanish at the boundaries. 
There is at present no relevant experimental data on 
samples of this kind. The closest are Toxen's for the 
critical fields of pure indium films, which are con­
siderably larger, i.e., of the order of 300 A.6 Toxen7 has 
also analyzed his measurements with the aid of the 
Ginzburg-Landau theory,8 obtaining a connection be­
tween the weak-field susceptibility and the critical field. 
For very thin films the relation is 

hc/Hc=(WKo)-112, (32) 

where hc and Hc are thin film and bulk critical fields, 
respectively. As previously stated, the main numerical 

5 A. B. Pippard, Proc. Roy. Soc. (London) A216, 547 (1953). 
6 A. M. Toxen, Phys. Rev. 123, 1442 (1961). 
7 A. M. Toxen, Phys. Rev. 127, 382 (1962). 
8 V. L. Ginzburg and L. D. Landau, Zh. Eksperim. i Teor. Fiz. 

20, 1064 (1950). 

FIG. 1. Magnetic susceptibility. 

result of this paper is that K/KQ is an order of magnitude 
smaller than previous estimates. If Toxen's expression 
Eq. (32) is now combined with our result, critical fields 
about 3 times larger are predicted. I t would therefore 
be of interest to have measurements on such very thin 
films as well as to extend the present calculations to 
larger films. 

No account has been taken of the effect of impurities 
distributed throughout the volume of the sample or of 
the scattering from the boundaries. These must be 
considered in evaluating the conjecture often made that 
size and impurity effects are similar, and that they can 
be described by an effective correlation length £ 
= £(£OAO> where I is the mean free path for impurity 
scattering.5 Even from the present simplified but com­
pletely "microscopic" theory one does find that the 
finite size cannot be completely described in this way: 
that is, one finds significant size effects in the magnetic 
susceptibility even when the energy gap is the same as 
in a bulk medium. This arises from the rather different 
dependence of the energy and of the susceptibility on 
the pair-correlation function of the film. 

+ 2 — (x+x'+ \x-x'\). (31) 10" 


